Publications
Biorefining
Bi, R., Khatri, V., Chandra, R., Takada, M., Figueroa, D. V., Zhou, H., … & Saddler, J. (2021). Enhancing Kraft based dissolving pulp production by integrating green liquor neutralization. Carbohydrate Polymer Technologies and Applications, 2, 100034.
Takada, M., & Saddler, J. N. (2020). The influence of pre-steaming and lignin distribution on wood pellet robustness and ease of subsequent enzyme-mediated cellulose hydrolysis. Sustainable Energy & Fuels.
Song, Y., Chandra, R. P., Zhang, X., & Saddler, J. N. (2020). Non-productive celluase binding onto deep eutectic solvent (DES) extracted lignin from willow and corn stover with inhibitory effects on enzymatic hydrolysis of cellulose. Carbohydrate Polymers, 250, 116956.
Wu, J., Chandra, R. P., Takada, M., Liu, L. Y., Renneckar, S., Kim, K. H., … & Saddler, J. N. (2020). Enhancing enzyme-mediated cellulose hydrolysis by incorporating acid groups onto the lignin during biomass pretreatment. Frontiers in Bioengineering and Biotechnology, 8.
Wu, J., Chandra, R., Takada, M., Del Rio, P., Kim, K. H., Kim, C. S., … & Saddler, J. (2020). Alkaline sulfonation and thermomechanical pulping pretreatment of softwood chips and pellets to enhance enzymatic hydrolysis. Bioresource Technology, 315, 123789.
van der Zwan, T., Sigg, A., Hu, J., Chandra, R. P., & Saddler, J. N. (2020). Enzyme-Mediated Lignocellulose Liquefaction Is Highly Substrate-Specific and Influenced by the Substrate Concentration or Rheological Regime. Frontiers in bioengineering and biotechnology, 8, 917.
Mboowa, D., Chandra, R. P., Hu, J., & Saddler, J. N. (2020). Substrate characteristics that influence the Filter paper assay’s ability to predict the hydrolytic potential of cellulase mixtures. ACS Sustainable Chemistry & Engineering, 8(28), 10521-10528.
Takada, M., Chandra, R., Wu, J., & Saddler, J. N. (2020). The influence of lignin on the effectiveness of using a chemithermomechanical pulping based process to pretreat softwood chips and pellets prior to enzymatic hydrolysis. Bioresource Technology, 302, 122895.
Wu, J., Chandra, R. P., Kim, K. H., Kim, C. S., Pu, Y., Ragauskas, A. J., & Saddler, J. N. (2020). Enhancing enzyme-mediated hydrolysis of mechanical pulps by deacetylation and delignification. ACS Sustainable Chemistry & Engineering, 8(15), 5847-5855.
Mboowa, D., Khatri, V., & Saddler, J. N. (2020). The use of fluorescent protein-tagged carbohydrate-binding modules to evaluate the influence of drying on cellulose accessibility and enzymatic hydrolysis. RSC Advances, 10(45), 27152-27160.
Van der Zwan, T., Chandra, R. P., & Saddler, J. N. (2019). Laccase-mediated hydrophilization of lignin decreases unproductive enzyme binding but limits subsequent enzymatic hydrolysis at high substrate concentrations. Bioresource technology, 292, 121999.
Takada, M., Chandra, R. P., & Saddler, J. N. (2019). The influence of lignin migration and relocation during steam pretreatment on the enzymatic hydrolysis of softwood and corn stover biomass substrates. Biotechnology and bioengineering, 116(11), 2864-2873.
Zhong, N., Chandra, R., & Saddler, J. J. N. (2019). Sulfite post-treatment to simultaneously detoxify and improve the enzymatic hydrolysis and fermentation of a steam-pretreated softwood lodgepole pine whole slurry. ACS Sustainable Chemistry & Engineering, 7(5), 5192-5199.
Song, Y., Chandra, R. P., Zhang, X., Tan, T., & Saddler, J. N. (2019). Comparing a deep eutectic solvent (DES) to a hydrotrope for their ability to enhance the fractionation and enzymatic hydrolysis of willow and corn stover. Sustainable Energy & Fuels, 3(5), 1329-1337.
Wu, J., Chandra, R., & Saddler, J. (2019). Alkali–oxygen treatment prior to the mechanical pulping of hardwood enhances enzymatic hydrolysis and carbohydrate recovery through selective lignin modification. Sustainable energy & fuels, 3(1), 227-236.
Tang, Y., Chandra, R. P., Sokhansanj, S., & Saddler, J. N. (2018). The role of biomass composition and steam treatment on durability of pellets. BioEnergy Research, 11(2), 341-350.
Zhai, R., Hu, J., & Saddler, J. N. (2018). Minimizing cellulase inhibition of whole slurry biomass hydrolysis through the addition of carbocation scavengers during acid-catalyzed pretreatment. Bioresource technology, 258, 12-17.
Zhai, R., Hu, J., & Saddler, J. N. (2018). The inhibition of hemicellulosic sugars on cellulose hydrolysis are highly dependant on the cellulase productive binding, processivity, and substrate surface charges. Bioresource technology, 258, 79-87.
Zhai, R., Hu, J., & Saddler, J. J. N. (2018). Extent of enzyme inhibition by phenolics derived from pretreated biomass is significantly influenced by the size and carbonyl group content of the phenolics. ACS Sustainable Chemistry & Engineering, 6(3), 3823-3829.
van der Zwan, T., Hu, J., & Saddler, J. N. (2017). Mechanistic insights into the liquefaction stage of enzyme‐mediated biomass deconstruction. Biotechnology and Bioengineering, 114(11), 2489-2496.
Ragauskas, A. J., Beckham, G. T., Biddy, M. J., Chandra, R., Chen, F., Davis, M. F., … & Langan, P. (2014). Lignin valorization: improving lignin processing in the biorefinery. science, 344(6185).
Panagiotopoulos, I.A., Chandra, R.P., Saddler, J.N. 2013. A two stage pretreatment approach to maximise sugar yield to enhance reactive lignin recovery from poplar wood chips. Bioresource Technology (2013), 130, 570–577. http://dx.doi.org/10.1016/j.biortech.2012.12.093
Saddler, J.N., Kumar, L. 2013. Special Issue from the NSERC Bioconversion network workshop: pretreatment and fractionation of biomass for biorefinery/biofuels. Biotechnology for Biofuels 2013, 6:17. http://dx.doi.org/10.1186/1754-6834-6-17
Kapu, S.L., Piddocke, M., Saddler, J.N., 2013. High gravity and high cell density mitigate some of the fermentation inhibitory effects of softwood hydrolysates. AMB Express (2013). 3:15 doi: 10.1186/2191-0855-3-15. http://dx.doi.org/10.1186/2191-0855-3-15
Shen, F., Hu, J., Zhong, Y., Liu, M.L.Y., Saddler, J.N., Liu, R. 2012. Ethanol production from steam-pretreated sweet sorghum bagasse with high substrate consistency enzymatic hydrolysis. Biomass & Bioenergy, 41, 157-164. http://dx.doi.org/10.1016/j.biombioe.2012.02.022
Kumar, L., Tooyserkani, Z., Sokhansanj, S., Saddler, J.N. 2012. Does densification influence the steam pretreatment and enzymatic hydrolysis of softwoods to sugars? Bioresource Technology (2012), 6:15, 121, 190-198. http://dx.doi.org/10.1016/j.biortech.2012.06.049
Kumar, L., Chandra, R., Saddler, J. 2011. Influence of Steam Pretreatment Severity on Post-Treatments Used to Enhance the Enzymatic Hydrolysis of Pretreated Softwoods at Low Enzyme Loadings. Biotechnology and Bioengineering, 108(10), 2300-2311. http://dx.doi.org/10.1002/bit.23185
Nakagame, S., Chandra, R.P., Kadla, J.F., Saddler, J.N. 2011a. Enhancing the Enzymatic Hydrolysis of Lignocellulosic Biomass by Increasing the Carboxylic Acid Content of the Associated Lignin. Biotechnology and Bioengineering, 108(3), 538-548. http://dx.doi.org/10.1002/bit.22981
Nakagame, S., Chandra, R.P., Kadla, J.F., Saddler, J.N. 2011b. The isolation, characterization and effect of lignin isolated from steam pretreated Douglas-fir on the enzymatic hydrolysis of cellulose. Bioresource Technology, 102(6), 4507-4517. http://dx.doi.org/10.1016/j.biortech.2010.12.082
Chandra, R.P., Au-Yeung, K., Chanis, C., Roos, A.A., Mabee, W., Chung, P.A., Ghatora, S., Saddler, J.N. 2011. The Influence of Pretreatment and Enzyme Loading on the Effectiveness of Batch and Fed-Batch Hydrolysis of Corn Stover. Biotechnology Progress, 27(1), 77-85. http://dx.doi.org/10.1002/btpr.508
Shen, F., Kumar, L., Hu, J., Saddler, J.N. 2011. Evaluation of hemicellulose removal by xylanase and delignification on SHF and SSF for bioethanol production with steam-pretreated substrates. Bioresource Technology, 102(19), 8945-8951. http://dx.doi.org/10.1016/j.biortech.2011.07.028
Shen, F., Saddler, J.N., Liu, R., Lin, L., Deng, S., Zhang, Y., Yang, G., Xiao, H., Li, Y. 2011. Evaluation of steam pretreatment on sweet sorghum bagasse for enzymatic hydrolysis and bioethanol production. Carbohydrate Polymers, 86(4), 1542-1548. http://dx.doi.org/10.1016/j.carbpol.2011.06.059
Kumar, L., Chandra, R., Chung, P.A., Saddler, J. 2010. Can the same steam pretreatment conditions be used for most softwood to achieve good, enzymatic hydrolysis and sugar yields? Bioresource Technology, 101(20), 7827-7833. http://dx.doi.org/10.1016/j.biortech.2010.05.023
Del Rio, L.F., Chandra, R.P., Saddler, J.N. 2010. The effect of varying organosolv pretreatment chemicals on the physicochemical properties and cellulolytic hydrolysis of mountain pine beetle-killed Lodgepole pine. Applied Biochemistry and Biotechnology, 161(1-8), 1-21. http://dx.doi.org/10.1007/s12010-009-8786-6
Pan, X., Xie, D., Yu, R.W., Lam, D., Saddler, J.N. 2007. Pretreatment of lodgepole pine killed by mountain pine beetle using the ethanol organosolv process: Fractionation and process optimization. Industrial & Engineering Chemistry Research, 46(8), 2609-2617. http://dx.doi.org/10.1021/ie061576l
Chandra, R.P., Saddler, J.N., Beatson, R.P. 2007. Treatment of Douglas-fir heartwood thermomechanical pulp with laccases: Effect of treatment conditions on peroxide bleaching. Journal of Wood Chemistry and Technology, 27(2), 73-82. http://dx.doi.org/10.1080/02773810701486709
Ohgren, K., Bura, R., Lesnicki, G., Saddler, J., Zacchi, G. 2007. A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Process Biochemistry, 42(5), 834-839. http://dx.doi.org/10.1016/j.procbio.2007.02.003
Mabee, W.E., Gregg, D.J., Arato, C., Berlin, A., Bura, R., Gilkes, N., Mirochnik, O., Pan, X., Pye, E.K., Saddler, J.N. 2006b. Updates on softwood-to-ethanol process development. Applied Biochemistry and Biotechnology, 129(1-3), 55-70. http://dx.doi.org/10.1385/ABAB:129:1:55
Pan XJ, Saddler J.N. 2013. Effect of replacing Polyol by organosolv and kraft lignin on the property and structure of rigid polyurethane foam. Biotechnology for Biofuels 2013, 6:12, 1-10. http://dx.doi.org/10.1186/1754-6834-6-12
Teghammar, A., Chandra, R., Saddler, J.N., Taherzadeh, M.J., Horvath, I.S. 2012. Substrate characteristic analysis for anaerobic digestion: A study on rice and Triticale straw. Bioresources, 7(3), 3921-3934. http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_07_3_3921_Teghammar_Substrate_Anaerobic_Digestion_Rice_Triticale
Keating, J., Johansson, C.I., Saddler, J.N., Beatson, R.P. 2008. Kinetics of hydrogen peroxide brightening of western red cedar (Thuja plicata Donn) CTMP. Journal of Wood Chemistry and Technology, 28(2), 153-166. http://dx.doi.org/10.1080/02773810802125107
Pan, X., Xie, D., Yu, R.W., Saddler, J.N. 2008. The bioconversion of mountain pine beetle-killed Lodgepole pine to fuel ethanol using the organosolv process. Biotechnology and Bioengineering, 101(1), 39-48. http://dx.doi.org/10.1002/bit.21883
Munoz, C., Mendonca, R., Baeza, J., Berlin, A., Saddler, J., Freer, J. 2007. Bioethanol production from bio-organosolv pulps of Pinus radiata and Acacia dealbata. Journal of Chemical Technology and Biotechnology, 82(8), 767-774. http://dx.doi.org/10.1002/jctb.1737
Pan, X., Xie, D., Kang, K.-Y., Yoon, S.-L., Saddler, J.N. 2007. Effect of organosolv ethanol pretreatment variables on physical characteristics of hybrid poplar substrates. Applied Biochemistry and Biotechnology, 137, 367-377. http://dx.doi.org/10.1007/978-1-60327-181-3_32
Enzyme Applications
Han, X., Bi, R., Khatri, V., Oguzlu, H., Takada, M., Jiang, J., … & Saddler, J. N. (2021). Use of Endoglucanase and Accessory Enzymes to Facilitate Mechanical Pulp Nanofibrillation. ACS Sustainable Chemistry & Engineering, 9(3), 1406-1413.
Cebreiros, F., Seiler, S., Dalli, S. S., Lareo, C., & Saddler, J. (2020). Enhancing cellulose nanofibrillation of eucalyptus Kraft pulp by combining enzymatic and mechanical pretreatments. Cellulose, 1-18.
Han, X., Bi, R., Oguzlu, H., Takada, M., Jiang, J., Jiang, F., … & Saddler, J. N. (2020). Potential To Produce Sugars and Lignin-Containing Cellulose Nanofibrils from Enzymatically Hydrolyzed Chemi-Thermomechanical Pulps. ACS Sustainable Chemistry & Engineering, 8(39), 14955-14963.
Tian, D., Zhong, N., Leung, J., Shen, F., Hu, J., & Saddler, J. N. (2020). Potential of Xylanases to Reduce the Viscosity of Micro/Nanofibrillated Bleached Kraft Pulp. ACS Applied Bio Materials, 3(4), 2201-2208.
Novy, V., Aïssa, K., Nielsen, F., Straus, S. K., Ciesielski, P., Hunt, C. G., & Saddler, J. (2019). Quantifying cellulose accessibility during enzyme-mediated deconstruction using 2 fluorescence-tagged carbohydrate-binding modules. Proceedings of the National Academy of Sciences, 116(45), 22545-22551.
Aïssa, K., Karaaslan, M. A., Renneckar, S., & Saddler, J. N. (2019). Functionalizing Cellulose Nanocrystals with Click Modifiable Carbohydrate-Binding Modules. Biomacromolecules, 20(8), 3087-3093.
Aïssa, K., Novy, V., Nielsen, F., & Saddler, J. (2018). Use of carbohydrate binding modules to elucidate the relationship between fibrillation, hydrolyzability, and accessibility of cellulosic substrates. ACS Sustainable Chemistry & Engineering, 7(1), 1113-1119.
Hu, J., Davies, J., Mok, Y. K., Arato, C., & Saddler, J. N. (2018). The potential of using immobilized xylanases to enhance the hydrolysis of soluble, biomass derived xylooligomers. Materials, 11(10), 2005.
Hu, J., Mok, Y. K., & Saddler, J. N. (2018). Can we reduce the cellulase enzyme loading required to achieve efficient lignocellulose deconstruction by only using the initially absorbed enzymes?. ACS Sustainable Chemistry & Engineering, 6(5), 6233-6239.
Long, L., Tian, D., Zhai, R., Li, X., Zhang, Y., Hu, J., … & Saddler, J. (2018). Thermostable xylanase-aided two-stage hydrolysis approach enhances sugar release of pretreated lignocellulosic biomass. Bioresource technology, 257, 334-338.
Hu, J., Tian, D., Renneckar, S., & Saddler, J. N. (2018). Enzyme mediated nanofibrillation of cellulose by the synergistic actions of an endoglucanase, lytic polysaccharide monooxygenase (LPMO) and xylanase. Scientific reports, 8(1), 1-8.
Gourlay, K., Van Der Zwan, T., Shourav, M., & Saddler, J. (2018). The potential of endoglucanases to rapidly and specifically enhance the rheological properties of micro/nanofibrillated cellulose. Cellulose, 25(2), 977-986.
Long, L., Tian, D., Hu, J., Wang, F., & Saddler, J. (2017). A xylanase-aided enzymatic pretreatment facilitates cellulose nanofibrillation. Bioresource Technology, 243, 898-904.
Hu, J., Pribowo, A., & Saddler, J. N. (2016). Oxidative cleavage of some cellulosic substrates by auxiliary activity (AA) family 9 enzymes influences the adsorption/desorption of hydrolytic cellulase enzymes. Green Chemistry, 18(23), 6329-6336.
Mok, Y. K., Arantes, V., & Saddler, J. N. (2015). A NaBH 4 coupled ninhydrin-based assay for the quantification of protein/enzymes during the enzymatic hydrolysis of pretreated lignocellulosic biomass. Applied biochemistry and biotechnology, 176(6), 1564-1580.
Gourlay, K., Hu, J., Arantes, V., Penttilä, M., & Saddler, J. N. (2015). The use of carbohydrate binding modules (CBMs) to monitor changes in fragmentation and cellulose fiber surface morphology during cellulase-and swollenin-induced deconstruction of lignocellulosic substrates. Journal of Biological Chemistry, 290(5), 2938-2945.
Keith Gourlay, Jinguang Hu, Valdeir Arantes, Merja Penttila, Jack N. Saddler. The use of Carbohydrate Binding Modules (CBMs) to monitor changes in fragmentation and cellulose fibre surface morphology during Cellulase and Swollenin induced deconstruction of lignocellulosic substrates. The journal of Biological Chemistry (2014) 1-22, DOI: 10.1074/jbc.M114.627604
Valdeir Arantes, Keith Gourlay and Jack N Saddler (2014) The enzymatic hydrolysis of pretreated pulp fibers predominantly involves “peeling/erosion” modes of action. Biotechnology for Biofuels 7:87, DOI: 10.1186/1754-6834-7-87
Jinguang Hu, Valdeir Arantes, Amadeus Pribowo, Keith Gourlay and Jack N. Saddler (2014) Substrate factors that influence the synergistic interaction of AA9 and cellulases during the enzymatic hydrolysis of biomass. Energy & Environmental Science. 7 (7), 2308 – 2315
Hu J, Arantes V, Pribowo A & Saddler JN (2013) The synergistic action of accessory enzymes enhances the hydrolytic potential of a “cellulase mixture” but is highly substrate specific. Biotechnology for Biofuels 6: 112. http://dx.doi.org/10.1186/1754-6834-6-112
Gourlay, K., Hu, J., Arantes, V., Andberg, M., Saloheimo, M., Penttilä, M., Saddler, J., Swollenin Aids in the Amorphogenesis Step during the Enzymatic Hydrolysis of Pretreated Biomass, Bioresource Technology (2013), 142, 498-503. http://dx.doi.org/10.1016/j.biortech.2013.05.053
Pribowo,A.Y., Hu, J., Arantes, V., Saddler, J.N. 2013. The development and use of an ELISA-based method to follow the distribution of cellulase monocomponents during the hydrolysis of pretreated corn stover. Biotechnology for Biofuels (2013), 6:80. http://dx.doi.org/10.1186/1754-6834-6-80
Gourlay, K., Hu, J., Arantes, V., Andberg, M., Saloheimo, M., Penttilä, M., & Saddler, J. (2013). Swollenin aids in the amorphogenesis step during the enzymatic hydrolysis of pretreated biomass. Bioresource technology, 142, 498-503.
Gourlay, K., Arantes, V., & Saddler, J. N. (2012). Use of substructure-specific carbohydrate binding modules to track changes in cellulose accessibility and surface morphology during the amorphogenesis step of enzymatic hydrolysis. Biotechnology for biofuels, 5(1), 1-14.
Gourlay, K., Arantes, V., Saddler, J.N. 2012. Use of substructure-specific carbohydrate binding modules to track changes in cellulose accessibility and surface morphology during the amorphogenesis step of enzymatic hydrolysis. Biotechnology for biofuels, 5:51. http://dx.doi.org/10.1016/j.biortech.2013.05.053
Del Rio, L.F., Chandra, R.P., Saddler, J.N. 2012. Fibre size does not appear to influence the ease of enzymatic hydrolysis of organosolv-pretreated softwoods. Bioresource Technology, 107, 235-242. http://dx.doi.org/10.1016/j.biortech.2011.12.057
Olsen, C., Arantes, V., Saddler, J. 2012. The use of predictive models to optimize sugar recovery obtained after the steam pre-treatment of softwoods. Biofuels Bioproducts & Biorefining-Biofpr, 6(5), 534-548. http://dx.doi.org/10.1002/bbb.1347
Pribowo, A., Arantes, V., Saddler, J.N. 2012. The adsorption and enzyme activity profiles of specific Trichoderma reesei cellulase/xylanase components when hydrolyzing steam pretreated corn stover. Enzyme and Microbial Technology, 50(3), 195-203. http://dx.doi.org/10.1016/j.enzmictec.2011.12.004
Arantes, V., Saddler, J.N. 2011. Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnology for biofuels, 4(3), 1-17. http://dx.doi.org/10.1186/1754-6834-4-3
Kumar, L., Chandra, R., Saddler, J. 2011. Influence of Steam Pretreatment Severity on Post-Treatments Used to Enhance the Enzymatic Hydrolysis of Pretreated Softwoods at Low Enzyme Loadings. Biotechnology and Bioengineering, 108(10), 2300-2311. http://dx.doi.org/10.1002/bit.23185
Nakagame, S., Chandra, R.P., Kadla, J.F., Saddler, J.N. 2011a. Enhancing the Enzymatic Hydrolysis of Lignocellulosic Biomass by Increasing the Carboxylic Acid Content of the Associated Lignin. Biotechnology and Bioengineering, 108(3), 538-548. http://dx.doi.org/10.1002/bit.22981
Nakagame, S., Chandra, R.P., Kadla, J.F., Saddler, J.N. 2011b. The isolation, characterization and effect of lignin isolated from steam pretreated Douglas-fir on the enzymatic hydrolysis of cellulose. Bioresource Technology, 102(6), 4507-4517. http://dx.doi.org/10.1016/j.biortech.2010.12.082
Del Rio, L.F., Chandra, R.P., Saddler, J.N. 2011. The Effects of Increasing Swelling and Anionic Charges on the Enzymatic Hydrolysis of Organosolv-Pretreated Softwoods at Low Enzyme Loadings. Biotechnology and Bioengineering, 108(7), 1549-1558. http://dx.doi.org/10.1002/bit.23090
Hu, J., Arantes, V., Saddler, J.N. 2011. The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? Biotechnology For Biofuels (2011), 4:36. http://dx.doi.org/10.1186/1754-6834-4-36
Nakagame, S., Chandra, R.P., Saddler, J.N. 2010. The effect of isolated lignins, obtained from a range of pretreated lignocellulosic substrates, on enzymatic hydrolysis. Biotechnology and Bioengineering, 105(5), 871-879. http://dx.doi.org/10.1002/bit.22626
Arantes, V., Saddler, J.N. 2010. Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnology for Biofuels, 3(4). http://dx.doi.org/10.1186/1754-6834-3-4
Tu, M., Saddler, J.N. 2010. Potential enzyme cost reduction with the addition of surfactant during the hydrolysis of pretreated softwood. Applied Biochemistry and Biotechnology, 161(1-8), 274-287. http://dx.doi.org/10.1007/s12010-009-8869-4
Bura, R., Chandra, R., Saddler, J. 2009. Influence of xylan on the enzymatic hydrolysis of steam-pretreated corn stover and hybrid Poplar. Biotechnology Progress, 25(2), 315-322. http://dx.doi.org/10.1002/btpr.98
Chandra, R.P., Ewanick, S.M., Chung, P.A., Au-Yeung, K., Del Rio, L., Mabee, W., Saddler, J.N. 2009. Comparison of methods to assess the enzyme accessibility and hydrolysis of pretreated lignocellulosic substrates. Biotechnology Letters, 31(8), 1217-1222. http://dx.doi.org/10.1007/s10529-009-9993-5
Zhang, X., Qin, W., Paice, M.G., Saddler, J.N. 2009. High consistency enzymatic hydrolysis of hardwood substrates. Bioresource Technology, 100(23), 5890-5897. http://dx.doi.org/10.1016/j.biortech.2009.06.082
Tu, M., Pan, X., Saddler, J.N. 2009a. Adsorption of cellulase on cellulolytic enzyme lignin from Lodgepole pine. Journal of Agricultural and Food Chemistry, 57(17), 7771-7778. http://dx.doi.org/10.1021/jf901031m
Tu, M., Zhang, X., Paice, M., MacFarlane, P., Saddler, J.N. 2009b. The potential of enzyme recycling during the hydrolysis of a mixed softwood feedstock. Bioresource Technology, 100(24), 6407-6415. http://dx.doi.org/10.1016/j.biortech.2009.06.108
Tu, M., Zhang, X., Paice, M., McFarlane, P., Saddler, J.N. 2009c. Effect of surfactants on separate hydrolysis fermentation and simultaneous saccharification fermentation of pretreated Lodgepole pine. Biotechnology Progress, 25(4), 1122-1129. http://dx.doi.org/10.1002/btpr.198
Chandra, R., Ewanick, S., Hsieh, C., Saddler, J.N. 2008. The characterization of pretreated lignocellulosic substrates prior to enzymatic hydrolysis, Part 1: A modified Simons’ staining technique. Biotechnology Progress, 24(5), 1178-1185. http://dx.doi.org/10.1002/btpr.33
Tu, M., Chandra, R.P., Saddler, J.N. 2007. Recycling cellulases during the hydrolysis of steam exploded and ethanol pretreated lodgepole pine. Biotechnology Progress, 23(5), 1130-1137. http://dx.doi.org/10.1021/bp070129d
Berlin, A., Maximenko, V., Gilkes, N., Saddler, J. 2007. Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnology and Bioengineering, 97(2), 287-296. http://dx.doi.org/10.1002/bit.21238
Tu, M., Chandra, R.P., Saddler, J.N. 2007. Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates. Biotechnology Progress, 23(2), 398-406. http://dx.doi.org/10.1021/bp060354f
Ohgren, K., Bura, R., Saddler, J., Zacchi, G. 2007. Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresource Technology, 98(13), 2503-2510. http://dx.doi.org/10.1016/j.biortech.2006.09.003
Berlin, A., Maximenko, V., Bura, R., Kang, K., Gilkes, N., Saddler, J. 2006. A rapid microassay to evaluate enzymatic hydrolysis of lignocellulosic substrates. Biotechnology and Bioengineering, 93(5), 880-886. http://dx.doi.org/10.1002/bit.20783
Berlin, A., Gilkes, N., Kilburn, D., Maximenko, V., Bura, R., Markov, A., Skomarovsky, A., Gusakov, A., Sinitsyn, A., Okunev, O., Solovieva, I., Saddler, J.N. 2006. Evaluation of cellulase preparations for hydrolysis of hardwood substrates. Applied Biochemistry and Biotechnology, 130(1-3), 528-545. http://dx.doi.org/10.1016/j.enzmictec.2005.01.039
Bioenergy Policy & Techno-economics
Su, J., Cao, L., Lee, G., Tyler, J., Ringsred, A., Rensing, M., … & Saddler, J. J. (2021). Challenges in determining the renewable content of the final fuels after co-processing biogenic feedstocks in the fluid catalytic cracker (FCC) of a commercial oil refinery. Fuel, 294, 120526.
Ebadian, M., van Dyk, S., McMillan, J. D., & Saddler, J. (2020). Biofuels policies that have encouraged their production and use: An international perspective. Energy Policy, 147, 111906.
Brown, A., Waldheim, L., Landälv, I., Saddler, J., Ebadian, M., McMillan, J. D., … & Klein, B. (2020). Advanced biofuels–potential for cost reduction. IEA Bioenergy: Paris, France.
van Dyk, S., Su, J., Ebadian, M., O’Connor, D., Lakeman, M., & Saddler, J. J. (2019). Potential yields and emission reductions of biojet fuels produced via hydrotreatment of biocrudes produced through direct thermochemical liquefaction. Biotechnology for biofuels, 12(1), 281.
van Dyk, S., Su, J., Mcmillan, J. D., & Saddler, J. (2019). Potential synergies of drop‐in biofuel production with further co‐processing at oil refineries. Biofuels, Bioproducts and Biorefining, 13(3), 760-775.
Saddler, J. (2019). Task Focus-Task 39 Commercialising Conventional and Advanced Transport Biofuels from Biomass and Other Renewable Feedstocks. Biomass & Bioenergy, 128.
Ebadian, M., Saddler, J., & McMillan, J. (2018). Commercializing Conventional and Advanced Liquid Biofuels from Biomass.
Karatzos, S., van Dyk, J. S., McMillan, J. D., & Saddler, J. (2017). Drop‐in biofuel production via conventional (lipid/fatty acid) and advanced (biomass) routes. Part I. Biofuels, Bioproducts and Biorefining, 11(2), 344-362.
Cadham, W., Van Dyk, J. S., Kumar, J. L., & Saddler, J. N. (2016). Challenges and opportunities for the conversion technologies used to make forest bioenergy. In Mobilisation of Forest Bioenergy in the Boreal and Temperate Biomes (pp. 102-126). Academic Press.
McMillan, J., Saddler, J., & van Dyk, S. (2015, April). Commercializing conventional and advanced liquid biofuels from biomass. In Symposium on Biotechnology for Fuels and Chemicals (SBFC) (Vol. 27, p. 30).
Karatzos, S., McMillan, J. D., & Saddler, J. N. (2014). The potential and challenges of drop-in biofuels. Report for IEA Bioenergy Task, 39.
Stephen, J. D., Mabee, W. E., & Saddler, J. N. (2014). The ability of cellulosic ethanol to compete for feedstock and investment with other forest bioenergy options. Industrial Biotechnology, 10(2), 115-125.
Gupta, V. G., Tuohy, M., Kubicek, C. P., Saddler, J., & Xu, F. (Eds.). (2013). Bioenergy research: advances and applications. Newnes.
Saddler, J., & Kumar, L. (2013). Special Issue from the NSERC Bioconversion network workshop: pretreatment and fractionation of biomass for biorefinery/biofuels.
Saddler, J. N., Chan, M. K. H., Mes-Hartree, M., & Breuil, C. (2013). Biotechnology Department Forintek Canada Corp. Biomass Conversion Technology: Principles and Practice, 149.
Olsson, L., & Saddler, J. (2013). Biorefineries, using lignocellulosic feedstocks, will have a key role in the future bioeconomy. Biofuels, Bioproducts and Biorefining, 7(5), 475-477.
Stephen, J. D., Mabee, W. E., & Saddler, J. N. (2013). Lignocellulosic ethanol production from woody biomass: The impact of facility siting on competitiveness. Energy Policy, 59, 329-340.
Stephen, J. D., Mabee, W. E., & Saddler, J. N. (2012). Will second‐generation ethanol be able to compete with first‐generation ethanol? Opportunities for cost reduction. Biofuels, Bioproducts and Biorefining, 6(2), 159-176.
Other Publications
Wu, J., Kim, K. H., Jeong, K., Kim, D., Kim, C. S., Ha, J. M., … & Saddler, J. N. (2021). The production of lactic acid from chemi-thermomechanical pulps using a chemo-catalytic approach. Bioresource Technology, 324, 124664.